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ABSTRACT 
Jensen showed that any countable sequence A of A-admissibles is the initial 
part of the admissibility spectrum of a real. We consider ml-long sequences, to 
be realized by B c o h. The problem is similar to finding a club subset of a 
stationary set. We investigate when such a B can be forced and when one is 
already in V. 

With the realization by Platek [P] that for any real R, the least non-R- 

recursive ordinal (co~) is admissible, logicians began asking a variety of 

questions about admissibility spectra. Sacks [Sa] showed the converse: any 

countable admissible is realized as the first admissible relative to some real. 

Different proofs were later found by H. Friedman [B] and Steel [St]; Sacks's 

has the advantage of  producing a real minimal in the hyperdegrees among all 

such solutions (where a hyperdegree is an equivalence class of ----h, and A _-< h B 

ifA EL(co~, B)). Jensen [J] showed how to realize a countable sequence A of 
A-admissibles by a real. In ILl we fuse these methods to realize countable 
spectra with minimality at many points along the way. 

Going beyond the countable, S. Friedman [F2,3] figured out when a is the 

first admissible >_- [a[ relative to R c [al. He also showed how to realize 

simple spectra cofinal in the ordinals by a real, using Jensen coding [F1]. By 

Levy absoluteness, all the problems in realizing a sequence by a real are already 

contained in the case of a sequence through o91. Affecting all the ordinals by a 
real seems to call for Jensen coding. Therefore the more tractable problems 

about the uncountable allow for uncountable solutions. 

The purpose of this paper is to investigate realizing A C_ COl by B _C col 

(without collapsing col, to avoid trivialities). This problem is exceedingly 

similar to finding a club C through A, and even yields some new information 
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about this procedure. To force such a B or C, A must be stationary, our further 

hypotheses deriving solely from considerations of admissibility. The two kinds 

of forcing to get C, which serve different purposes, generate two for B for 

different purposes. In [BHK], the countability of the conditions means that the 

forcing partial order is ~:distributive,  so no new bounded sets are added. The 

finite conditions of [AS] imply that cardinals are preserved. In this paper, if the 

ground model already contains a club subset of  A, countable conditions seem 

to be the necessary tool for its building such a B. If it has no club, or if the 

construction fails, then finite conditions seem required to force a club tame 

enough for admissibles. 

Notation and background 

An ordinal a is admissible if L~ ~ KP ( =  ZF-Power-Replacement + Ao 

Bounding + Ao Comprehension + Foundation for definable classes), a is 

[Al . . . . .  A.]-admissible (Ai _c_ ORD) if 

(L,,[A~ . . . .  ,A.], E,A~ . . . .  ,A. )  ~KP. 

(For more details on admissibility, see [B].) [At . . . .  , A.]-Adm (or, if n -- 1, 

A-Adm), the admissibility spectrum of  [At . . . . .  A.], is {aia is [At . . . . .  A.]- 
admissible}. For a potential spectrum A, B realizes A to a (a = sup A if not 
otherwise specified) if B-Adm N a = A N a. The proof of  Jensen's theorem 
alluded to earlier realizes a sequence A C_ A-Adm by forcing with a definable 

partial order, so the construction needs only that the ground model (in effect 

sup A) is countable: 

La[A] ~ "A C_ A-Adm ^ sup A is countable ~ 3 R C_ to R realizes A". 

In Theorem 3 we use a combinatorial equivalent (under ZF) of oJ:preserva- 

tion: 

I "oJ  = iff 

V p E ~ V (Di, f [ i ~ co )D~ a set of  mutually incompatible 

sentences in the forcing language ~((g)  and 
I - I  

f:Di---*tot 3q< p Vi 

To see one direction, let (D~, f I i Eco) be such a sequence. In M[G], let 
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{~ (d~) ifd~ is the unique d ~DiM[G] ~ d, 

f( i)  = if V dEDiM[G]¢d.  

These are the only cases, since D, is an anti-chain, f i s  bounded by hypothesis. 

So the q which force such a bound are dense, and can do so only by eliminating 

all but countably many possibilities. Conversely, i fp  ~ " f :  to --- to~',  let Di -- 

{"f(i) -- a" I a < to~}. Any q < p which bounds the D~also bounds mg f i n  tol. 

THEOREM 1. ( V = L )  Suppose A C to~, V a E A  a is A-admissible. Then A 
is stationary iff  there is a partial order ~ such that 

I k-~, 3 B such that A = {a < to~ [ a is B-admissible} and to~ = COIL. 

PROOF. ~ Let B be as above in some generic extension. Let C - -  

{aIL~[B] < Lo,,[B]}. C _ B-Adm = A ,  so A contains a club. If L ~A is not 
stationary, let C E L witness that. Then C n (7 = ~ ,  which is a contradiction. 

This partial order will consist of  proper initial segments of  such a B. A 

condition will be a set of  ordinals correct through its sup which doesn't harm 

anything beyond its sup. Let 

= {p C_ tol[P is countable 
A N s u p p  + 1 = p-AdmN s u p p  + 1 
if sup p < a < tOiL, a ~ p-Adm, then a ~A }. 

" E  ~ "  is A~(Lo~,[A]), since the last clause is ~quivalent to "if  sup p < a < 

L - r k ( p ) . . . ' ,  q < p iffq end-extends p; i.e., q - p _ ORD - sup p. 

If G is ~-generic, let B = (JG. 
(1) B is unbounded in co~: I f p E ~  and a<to~, let f l > a ,  supp ,  r k p  be 

locally countable and inadmissible. Let R _ to realize A t fl + 1 a la Jensen, 

R ~Lp+~0[A] generic over Lp[A]. Let q = p^R .  
(2) Since B is cofinal in to~, by the restrictions on the conditions themselves, 

A realizes B. 
(3) ~ It- co, = C01L. 

If  suffices to show that ~ is countably distributive. Let (D i l l  < to) be a 

sequence of  dense subsets of  ~ .  ~ E L~, so (D, [i < to ) ~  L,~. Let ~ ,  (Di), 

A EH0 < H~ < • • • < H~ < • • • < L,~ be the canonical increasing sequence of  

countable elementary substructures of L~: 
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Ho = Skolem Hull (~,  (Di), A),  

H,,+, = S.H.(He U {09~ ~ He}), 

n =Une. 
a<]t 

(The Skolem functions choose the L-least witness: h~,(v) = least w if any such 

that Lo~ ~ ~0(w, v).) Let rt~" Ha ~ L, te). Let T(a) = (to~)L.~,, and 7(a) = least ~ such 

that L~ ~"r(a)  is countable". Note that to~ N He = z(a) < tr(a) < 7(a) < 
z(~ + 1). z(2) = supe<~ r(a), so {~(a) [ a < o91} is a club. 

As A is stationary, let a be such that "c(a)EA. Let p~ be the L-least 

ne(@)-generic over Lr<e)[A]. Pe hits each ne(D~). But i fp  E @ A He, rt(p) = p, 

so p~ hits each D~. It remains only to check that Pe is a condition. 

If z(a) </~ < 7(a), then Pe is set-genetic over Lp[A], so it will preserve all 

such admissibles. If fl > 7(a) then Pe~Lp[A ], again preserving admissibility. 

pe's spectrum is correct to z(a), by the definition of ~'. z(a)CA by choice of  a, 

so we must show that L,te)~"rte(~) preserves the admissibility of z(a)". 
Equivalently, we must show that (in V) @ preserves the admissibility of  o~. 

Suppose P01 ~ VxEo9 3y  ¢(x, y) (~0Ao). Let (p~+~, yn+~, z~+~) be the L[A]- 
least set such that 

z~ + i wi tnesses  that p .  + m E ~ ,  

Pn+l < pn, 

SUp p n + l >  rk yn +l, rk Pn, rk ~, 

Lrk p,+,[ P~ + ~] ~ ~(n, y~ + l). 

Let Po, = kips, ao, = sup Po,. p~'s spectrum is correct to a,o. This construction 

is Et(Le.[A ]), so ao, is A- inadmissible and Po, is correct at ao,. Po~ ~ Le.+ t[A ] so it 

affects nothing beyond ao~. Therefore Po~ E ~ ,  Po, < P, and clearly 

po~lF- VxEo~  3y~Le . [G]  ~,(x,y). D 

THEOREM 2. (V = L)  VA C_ A-Adm M m~ 

PROOF. 

countable elementary substructures of  L~ such that A E H0, with notation he, 

A contains a club iff  3 B __ w~, A -- B-Adm N o~. 

,~ {a I Le[B] "~ L,o,[B]} __ B-Adm = A is a club. 
=, Let {He la<Ogl} be the canonical increasing sequence of 
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z(a), y(a) as in the previous theorem. As before, col N H~ = z(a) < a(a) < 
y(a) < z(a + 1), and r(2) = lim,<~ z(a). 

Since Lo~¢"A contains a club", H~¢same. Let .4~H0 be a club subset 
of  A. Va n . (A)=A tqz(a) and z ( a ) ~ l i m A ,  so t ( a )EA.  Finally, Va 
(tr(fl) [fl <a)ELot~)+o~, as follows. Since Ha < L~o,, the definition of the 
sequence of hulls, evaluated in H~ (with parameter A), produces (Hp I fl < a). 
So, evaluation in Lot.) produces Ut",Hp [fl < a).  Since transitive collapses are 
unique, collapsing the lt'~j-/p's results in the L,(p)'s. Taking hulls and collapsing 
are definable operations, so the result is in Lot~)+~o. 

Let ~ be as in the previous theorem. ~ =aef ~ = ~ N L,¢~) because 
conditions p are countable sequences of  countable ordinals, so n ~ ( p ) =  p. 
Build B inductively: 

Stage 0: Let Po be the L-least generic for ~0 over Ly(0). 
Stage a + 1: Let P,+l be the L-least genetic for ~ + ~  over L~<~+~) through 

P~. 
Stage 2: Let p~ = U,,<~ p~. 

Let B = Po,,. 
It suffices to show inductively that p~ ~ ~,+~. First let a be 0 or a successor. 

po is correct through its supremum z(~), as z(a)EA and ~ preserves admissi- 
bility. For z(a)<fl  < y(a), p~ is set genetic over Lp[A N z(a)], so if fl is 
p~-inadmissible then fl is A-inadmissible. p~ELy(~)+~ so it does not affect 
admissibility beyond 7(a). Finally, 7(a) + 1 < z(a + 1) so p~EH~+ i. 

For 2 a limit, inductively p~ is correct to 3(2) = sup~<~ a(a). We show that 
p~ is ~ - g e n e r i c  over Lot~). Suppose D EH~ = U,<~ Ha is dense in ~'~. D ~H~ 
for some a, and Lo(~) ~ "its(D) is dense in ~ " .  p~+ ~ A ~t~(D) ÷ ~ ,  and ~t~(D) = 
D tq Lo(~) since 7t~ I ~' = Id. its(D) __ zt~(D), so px N ~ ( D )  ~ ~ ,  and px is 
generic over Lot~). As above, z(A)~A is px-admissible since ~' preserves 
admissibility; if z (2) < fl _-< ~r(;t) then px is set-generic over L~ [,4] and preserves 
A-admissibles. Finally, since (t~(fl) [fl _-< ;t), A ~ z(A)ELo(~)+o~, px is definable 
shortly beyond it(A), and so does not affect admissibility. [] 

The previous proofs used V = L implicitly, in that the needed parameters 
were hidden. They hinge on C o l _  to~ which collapses each a < ¢o~ to be 
countable, and a club A _c A. Col and A must  not destroy the admissibility of 
a ~ A - A d m ,  since the approximations to B are defined using them and must  
preserve members of A. We indicate that some restriction on the ground 
model is necessary by giving an example of  A c_ A-Adm containing a club but 

not being realized by any B c_ ah. Then we force to realize any stationary A, 
but using conditions quite different from the earlier ones. 
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EXAMPLE. A C_ O91 v contains a club, but there is no B __ o9~ such that 

A = B-Adm n 09~ v. 

Let A = Adm n (o9~, o9#). V will be L[G], where G will be a (genetic) 

minimal collapse of o9~ (see [N]). A condition will be an o9t-splitting tree of 

finite conditions for the collapse of o91. That is, let 

~' = {P I dom P = <~o91 
nag p C_ Levy partial order to collapse o91 

dom( p(a  ^a)) = dom(p(a  ^#)) 

aWz~p(a ) lp ( r ) } .  

Let G be ~-generic. G is constructibly equivalent to A,~o [ p] = the unique 

path through all p E G, which is an unbounded function f :  o9 --- w~. Also, all 
other cardinals are preserved. 

G is a minimal collapse in that if H E L [G] and L [H] ~ "o9~ is countable", 

then GEL[H]. To see this, let h be a term for a collapse ofog~ z in L[G]. Let 
p E ~ .  We will describe a fusion sequence from p, p = P0 > P~ > • • ", such 

that Po, I ~  "G EL[HI" .  
Given Pn, let a E dom pn have length n. We will define na E o9 and h (ha) E o91 

such that a > ]~ =, h(n3 > h(n#), inductively on a. 

Let (q)~ be such that (q)~(a) = q(r ^ a). Extend ( p~),^~ to ~ forcing a value for 

h (n,) (for some n, E o9) greater than each h (n#),/~ < a. Since each na E co, there 
must be an rnoE o9 such that for o91-many a, mo = no. Similarly, we have m~ E 09 

such that for og:many such a's, dom ff~(0) = m~. Let (p~ + ~),^y = ~ ,  where a is 

the ~th such ordinal (i.e., n~ = m0 and dom ~(0)  -- rnt). Let Po, be the fusion of 

the p~'s : po,(a) = pill(a). 
Po, l ~  "G EL[H]" ,  because at a split in Po~ each extension corresponds to 

different facts about h. Therefore h can tell which path the actual genetic G 

went through. 

In V[G], ifA = B-Adm O o91, then L[B] ~ "o9~ is countable". By the minima- 

lity of  the collapse, there is an a, o9~ < o~ < o9#, such that G EL~[B]. Once we 

show that Adm/G-Adm is unbounded in o9~ we will have reached a contradic- 

tion, by the definitions of  A and B. 

AdtrdG-Adm is unbounded in o9# by density considerations. Let p E # ,  

a < o92 L. Let fl > a, rk p be admissible. In L#, there is an isomorphism J 
between p and the full tree Id : <~o9~ ~ <°'ogtz, f(p(o)) = e. Let X c_ o9~ code a 
well-ordering of type ft. Xcan be coded into Id as follows. Let g:  ,oo9# ~, o9# be a 
bijection At(L,o#), ~" = {g(X I a) [ a < o9~}. Thin Id to q so that rng(q) = <,o~,. 
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Pull back q to p' ,  a thinning of p,  via f -  t. If G is ~-generic and p '  ~ G, then X is 
Al(L,o;[ p,  G]), so X E L p [ G ]  and fl ~ G-Adm. 

TI-IEOREM 3. (ZF) Suppose A C_ A-Adm M col. A is stationary i f f  3 ~ s.t .  

l t -a ,"  3 B A  = B-Adm f~ O.) 1 A (2)11/[GI = (/,)l V ' .  

PROOF. ,~ As in Theorem 1. 
=* This partial order would be the forcing from [AS] to produce a 

club C using finite conditions (essentially properties 1-3 below), were it not for 
the additional consideration of  admissibility. Even though we must end with a 
club subset of A, it cannot preserve the admissibility of every point of  A. 
(Consider its coth member.) Also, the construction will not destroy the 
admissibility of 2 ~ l i m  C N [C,A]-Adm, even though in general 2 ~ A .  So 
2 ~ l i m  C will be required to be in A when and only when 2 ~ C-Adm. This is 
the intent of 4; 5 provides enough room to expand dom(p)  while preserving 4. 
Furthermore, our context of admissibility theory necessitates a proof  of 
admissibility preservation, which includes techniques unnecessary in [AS]. 

We begin by preparing the ground model, by forcing an A-admissibility 
preserving collapse of each a < col. Let ~ --- { p [ dom p _c Adm tq a is finite 
and p(f l )  is a condition in the Levy collapse o f t  to 02}. I f f l  < a  then (the 
Boolean completion of) ~ is a complete subalgebra of( the  completion of) ~ .  
This implies that ~ preserves relativized admissibles: if X E V, a ~ X-Adm, 
and G is ~ generic over L~[X], then a ~ [G, X]-Adm. (For a detailed proof, see 
e.g. [J].) Also ~ ,  satisfies the c.c.c.: i fD  is a maximal anti-chain, let D E H  < 
H(co2), H countable; n(D)  = D M ~ ,  where a = COl A H and n is the transitive 
collapse of H; n(D) remains a maximal anti-chain in each ~p,  fl > a, so 
n(D) = D. In particular, ~ ,  is proper, so A remains stationary in a generic 
extension. Let G be ~,-generic. X/a < COl L~+ 10[G] ~ a is countable. 

Let ~ be the set of finite functions p : COl ~ CO~ satisfying the following: 
(1) p(o,) _-> a. 

(2) Ifao < a~, a ; ~ d o m  p, then a l - ao<= p(al)  - p(ao) (where a - fl = ? iff 
# =,,). 

(3) Let fs(a) (the final segment of a) be the least ? such that ? is the order type 
of  a final segment of a. Note that fs(a + 1) = 0. 
fs(p(a)) > fs(a). 

(4) Let 2 Esc  (2 is sufficiently dosed)  iff 2 CA and Lx[A] ~2 is a regular 
cardinal. (~ is the least p.r. closed ordinal > 2.) 
I fp(a)  = ,~ EA-Adm, then a is a limit iff2 ~sc,  and in this case a = ~. 
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(5) If,8 < a E d o m  p, fl ~Adm/sc ,  then fl + a < p(a). 
q < p i f f q ~ p .  

Let C be 9~-generic. 

LEMMA. (i) dom C = co L. 
(ii) rng C is closed. 
(iii) co~Ic.cl = co~. 

(iv) a E A - A d m ~ a ~ [ C ,  G,A]-Adm. 

Given this lemma, the proof  follows easily. Work in Lo,,[C, G,A]. Let 
(g~ ] a < w~) = lira C. To build B, at stage a + 1 choose the L[C, G, A]-least 
real which corrects the spectrum in the interval (g~,g~+~], and code it in 
(g~, g~ + to). (At stage 0, correct (0, go] and code it into to.) At limit stages take 
unions. If  g B < a E A - A d m  then B rgpEL~[C, G,A]. (We use here that G 
collapses ordinals fast, so the correcting reals show up soon.) So if 7 E (g~, g~+~] 
then whether 7 ~ B - A d m  is determined by B rq (g~, g~ + 09). Hence B's spec- 
t rum is correct on all intervals (g~, g~+,o). At ;t a limit, suppose ga ~A-Adm.  By 
(4), g ~ A .  By (iv), ga~[C ,G ,A] -Adm.  B Ig~ is A~(Lg~[C,G,A]), so g~E 

B-Adm. 

PROOF OF LEMMA. We omit  the ordinal arithmetic involved in verifying 
properties (1)-(5) when it is routine. 

(i) d o m  C = to~. 

Case I. a > dom p 
L e t p ' - -  p U {(a, rng p + a .2)} .  

Case H. , 8o<a< ,a l ,  a<p( ,8o)  
Let p'(,~) = P(~o)  + (~  - # d .  

Property (5): I f  fl < , 8  o, ,8 + a = ,8  + / g o +  (a - f l o )  < P(flo) + (a - f l o )  = 
p(~).  

I f f l  = fl0, Po + a = fl0 + fl0 + (a - fl0) < (by 3) P(flo) + (a - flo) = p(a).  

I f f l0  < f l  < a ,  fl - a < (by  C a s e  II) P( f lo)  + a = p ( a )  (as  a - f lo = a) .  

Case III. po < a < fl,, p(flo) < a 
Let p = sup{fl _-< a ] f l~Adm}.  

subcase A: If/~ ~ A d m ,  let p'(a) = P(flo) + (a - flo). 
To verify (5) note that iffl < a is admissible, then fl < f l ,  so fl + a = a. 
subcase B: I f f l E A d m ,  letp'(a) = max{ ] /+  a, P(flo) + (a +fl0)}. 
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To verify (2), we must check that fit - a <= P(flO - (fl + a). By (5) applied to 

p, fl + fit <= p(fll). 

(ii) rng C is closed. 
If7 < p(2)E lira, we want 2', 7' such that 7 < 7' < p(2) and p U { (2', 7') } =< P. 
An ordinal 2'  is sufficiently large for the domain if 2'  > dom p 12 and 

o.t. [2 ' ,2) = fs(2). 7' is sufficiently large for the range if 7 ' > r n g p  I2 and 

o.t. [7', p(2)) = fs(p(2)). 
Let 2' be any sufficiently large successor ordinal. Let 7' be a sufficiently large 

successor ordinal, which is also large enough to satisfy (1), (2), and (5). Then 
p u =<_ p.  

(iii) tot is preserved as a cardinal. 
Use the combinatorial version of  tol-preservation from the introduction. Let 

(D[, f / ]  i < to) be a sequence of  anti-chains and injections to tot, and p ~ 2 .  If  
D~ is not maximal, replace it with D'  U "~' {0 E D[ 7 ~0". Replace each ~0 E D[ by 
a maximal anti-chain D, forcing ~0; let D~ -- U(D~ I ~0 ED[}. Since 1 21 = tot, 

1-t 
the f,' can be converted uniformly to f :D~ ~ tot. Bounding the Di will also 
bound the D'. 

Let p,  (Di), A EH0 -~ H~ < • • • < Ho < • • • < H(toz) ( = hereditarily tot- 
sized sets) be an elementary chain of countable models of length tot. Since A is 
stationary, there is an a such that ORD Ha n tot CA. Let 

z t ' H ~ X ,  q = p U ( ( t o x ,  tox)}<p.  

For all i, 7r(D~) is countable. If  dGD~ is compatible with q, so is d t to(. 
X ¢ " d t  to x is compatible with some di E~(Dt)",  since D~ is a maximal anti- 
chain. 7r - t(d~) = d~, so d~ is compatible with d. Since Di is an anti-chain, d~ = d, 
so d ~ D  x. 

(iv) 2 preserves all A-admissibles. 
If 2 EA-Adm and 2 4: p(a) for all limits a, then C t 2 is set-generic over 

La[G, A ], hence preserves admissibility. (Recall that A-Adm = [G, A ]-Adm.) 
I f2  ~A-Adm and 2 -- p(a), a ~ l i m ,  then o~ = 2 and 2 is sufficiently closed. 

Also, C 12 is 2 ql6aL generic over La [G, A ]. Suppose p I ~-"La [C, G, A ] 
V x 9 y ~0 (x, y) ' ,  rk p,  rk ~0 < tip < 2. We will extend p to force "La [C, G, A ] 

VxP~ 3yP~q~(x, y) ' ,  for some fl,o such that tip <tip, < 2 .  
Let (q,Y)x,~ be the L[G,A]-least set such that q----/L r k q > r k y ,  q l F  

~0(X, y). Let fl,+t be the least admissible >_- sup{rk(q, Y)x,p [ X ~ ' p . , / ~  ~ ~p., 

p _-_ p}. Let tip, = lim ft.,/~ = p U {(flo,,fl~)}. 



234 ROBERT S. LUBARSKY Isr. J. Math. 

We need only show (a) P ~ ' c q L a  and (b) Pls-"La[C,G,A]V 
V x  ~. 9 y  p. ~o(x, y)". The most important point is that this definition can be 

equally well evaluated in L~ [G A ], or even La.[G, A ]. Proving such a fact needs 

that I F- reflects: roughly, p I S-~u iff p trk v/I Fu/. This is the point of  the next 

few lemmas, due essentially to Steel [St]. 

Let (Tv Iv < tot) enumerate the countable p.r. closed ordinals. 

DEFINITION. q0"% q~ if q~(a) < 7~=* q~(a) = q t _ i ( a ) ,  and if a is the least 

ordinal < 7~ such that q~(a) > 7,  then a ~ d o m  qt-~. 

EXTENSION LEMMA. l f  qo "~, qt, v' < v, ro < q0, then 3 rt < q~, ro "%, rt. 

PROOF. If rng (ro/qo) 17~, __C 7~., let rl = ql U r0 t 7~'. Otherwise, let a be the 

least ordinal <7¢  such that (ro/qo)(a) >7~,. Let r l = q ~ U  r 0 I a U  

{(a, min(r0(a), 7~ + a))}. 

RETAGGING LEMMA. I f  rk (a < v, qo ~'~, q~, then qo[ S-¢ iff  q~(s-¢. 

PROOF. This is a straightforward induction, using the extension lemma for 

the negation case. 

FORCING LEMMA. l f  z v = V, then IS- I Lv[G, A] × Lv[G, A] is AI(Lv[G,  A]). 

PROOF. The very definition of IF  restricted is a straightforward 
At(Lv [G, A ]) induction, except for the negation case. Let p, ~ be such that rk p, 
rk (a < v .  Let v' = max(rk p, rk ~a) + 1. I fp  ]s--lq~, then Vr < p r lb~,  and in 

particular V r < p such that r ELy,,,+2,[G, A ] r IF/tip. Otherwise, 3 r0 < p r0 [ S-~a. 
Let r~ _-< p be as given in the proof of  the extension lemma, for p = q0 = qt and 

P "~rt,..,, P. rtls-q 7 by the retagging lemma, and rtELr~,,+2,[G,A ]. So we can 
eliminate the unbounded quantifier in "p Is-q q," by using as the definition 

"V r~Lr~,.+2,[G,A ] r < P~r]~-9" .  
(a) Properties (1) and (3) are clear, flo, is a limit of  admissibles, so (5) and (2) 

are clear. To show (4), it suffices to show that flo, is A-inadmissible. ~'ao = flo,, so 

the forcing relation restricted to La,[G, A] is At. Therefore, the definition of Po, 

is AI(LB.[G, A ]), so flo~ is A-inadmissible. 

flo, < 2 because 2 is s.c. 

(b) We need to show that Vq < p VYcEd'a. 3 r < # 3 y E ~ o ,  r lFtp(x,  ~). 

Let q = # I fl,o, q ~ ~a., x E ~ .  some n. Therefore q r < q, r E ~ .... j~ ~ . , ,  
such that r IS-9(X, Y). Let r = r U t/. r _-< r, so r I S-~o(x, y), and e _-< q. [] 

QUESTION, It seems that building a B when possible requires countable 
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conditions, while in general forcing such a B requires finite conditions. Is there 
some way to make this precise and to prove it? 
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